02.11.18

Задачі з програмування на міжшкільну олімпіаду 31.10.2018 року


Задача1  Кульки (25 б.)   
Батьки купили Миколці кольорові кульки (8 кольорів) . Хлопчик розклав кульки у рядок та спробував порахувати  їх кількість для кожного кольору окремо. У рядок розкладені (в довільному порядку) N   (10  кульок.   Створіть програму, яка допоможе підрахувати кількість кульок кожного кольору  та визначить найбільшу кількість кульок одного кольору (передбачити випадок, коли може бути декілька варіантів  найбільшої  кількісті кульок одного кольору).
Технічні   умови.  Програма   зчитує   з   клавіатури   ціле   число  N  -   кількість
кульок, потім, через пропуск —  N  чисел від  1  до  8, якими   позначені  кольори кожної з
кульок  в тій послідовності, в якій вони потрапляли на очі Миколці від початку  рядка. Програма виводить на екран в один рядок через пропуски пари цілих чисел, де перше число пари - позначення кольору, а друге - кількість кульок такого кольору. У наступному рядку пару  чисел: максимальну кількість кульок одного кольору та число що позначає цей колір.
Приклад1:
Введення:
Виведення
14   1 1 3 4 1 2 4 2 5 6 7 8 1 4  
1 4 2 2 3 1 4 3 5 1 6 1 7 1 8 1
4 1
Приклад2:
Введення:
Виведення
16   1 3 3 4 2 2 4 2 5 7 7 8 5 4 6 7
1 1 2 3 3 2 4 3 5 2 6 1 7 3 8 1
3 2
3 4
3 7

Задача 2  Туристи (35 б.)  
Якось, під час літніх канікул команда юних туристів завітала до мальовничих Карпатських гір. У екскурсійному бюро їм запропонували мапу-схему гірської місцевості й до неї масив даних з висотами вершин, на які можна було безпечно підійматися. Але не всі вершини були поєднані між собою стежками. Тому перш ніж підкорювати найвищу вершину (така тільки одна) юним туристам необхідно було дізнатися, а чи взагалі можна до неї дістатися. У початковий момент туристи знаходяться у вершині (1,1) позначеній у
матриці з’єднання вершин. Мета підкорити вершину з максимальною висотою
(якщо це можливо).
Формат вхідних даних: У першому рядку файлу – натуральне число N<100 b=""> – кількість вершин. У другому рядку – рядок даних з висотами вершин (цілі додатні числа менші за
100). У наступних рядках – матриця з’єднання вершин між собою:0-стежки немає,
1- стежка є.
Формат  вихідних  даних: 
У вихідний файл записуємо в першому рядку значення максимальної
висоти в другому рядку  запис про доступність до цієї вершини. Якщо  вершину неможливо підкорити – файл містить відповідне повідомлення.
Приклад:
Input3.txt
5
4 2 7 6 8
0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
Output3.txt
8
Вершина з висотою 8 підкорена

Задача 3  Подарунки Снігуроньки (40 б.)
Взимку ковзанка переповнена  дітлахами.  Посередині  ковзанки  Дід Мороз розмістив  ялинку  та  побудував  навколо  неї  невеличку  огорожу  у вигляді  трикутника.  Снігуронька сховалася  під  ялинкою.  Ввечері  коли  на  ковзанці  найбільш  людно вона  виходить  зі  своєї  схованки  та  починає  кликати  дітвору  до  ялинки.   Снігуронька має  зачекати  поки  всі  дітлахи  дістануться  огорожі,   а тоді починає роздавати їм подарунки, але вона не любить довго чекати  і  хотіла  б  на  основі  інформації  про  поточне  розміщення дітей на ковзанці визначити скільки ж часу доведеться їй чекати. Для  простоти  вважатимемо  дітей  точками  на  площині.  Відомо,  що
як  тільки  Снігуронька  починає  кликати  дітей,  кожна  дитина  починає  рухатися  до  трикутника  (себто  до  огорожі ялинки)  зі  швидкістю  один  метр  на  секунду  по  найкоротшій траєкторії.  На  основі  координат  вершин  трикутної  огорожі  навколо ялинки  та  координат  дітей  у  момент  коли  вони  почують  Снігуроньку Вам  необхідно  визначити  скільки  часу  доведеться  чекати  Снігурочці на дітей.
 Формат вхідних даних:
Перший  три  рядки  файлу містять  координати  вершин  трикутної  огорожі
навколо ялинки. Кожен з цих рядків містить через пробіл два цілих числа fxi  та  (i = 1, 2, 3). Наступний рядок містить ціле число N    кількість  дітей  на  ковзанці.  Кожен  з  наступних  N  рядків містить  через  пробіл  два  цілих  числа  xi   та  .  Тут  (xi  ,  yi  )  – координати i-ої дитини. Всі координати задані в метрах.
 Формат  вихідних  даних: 
Єдине  число    час  очікування  Снігуроньки  в  секундах.  Відповідь необхідно вивести з двома знаками після коми, використовуючи для заокруглення стандартні математичні правила.
 Обмеження:
1 ≤ N ≤ 100,
-100 ≤ fxi, fyi , xi, yi ≤ 100,
трикутник огорожі є невиродженим, тобто має додатню площу, всі (xi,  yi) розміщені назовні трикутної огорожі, всі (xi,  yi)  є різними.
 Приклад:
Input4.txt
0 0
0 3
4 0
2
-1 -1
5 2
Output4.txt
2.00


Немає коментарів:

Дописати коментар